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A B S T R A C T   

Seagrass meadows of West-Central Florida (USA), between 27◦3′N – 28◦12′N; 82◦24′W – 82◦50′W, are closely 
monitored by federal, state, and local groups for benthic composition, density, and areal cover (extent). Biennial 
aerial mapping, annual in situ surveys, and monthly water quality measurements inform management and 
conservation actions. Here we leverage a complete archive of multiple satellite imagery products (i.e., Landsat-5, 
Landsat-7, Landsat-8, and Sentinel-2 imaging sensor data) to reconstruct seagrass areal cover estimates 
(1990–2021) in four regions of West-Central Florida: St. Joseph Sound, Clearwater Harbor, Tampa Bay, and 
Sarasota Bay. Satellite imagery hosted in Google Earth Engine (GEE) was screened for low cloud cover (<40%), 
and clear atmosphere and water conditions using a semi-automated process followed by visual inspection. Im
agery meeting these conditions for seagrass mapping was available for 16 years: 1990, 1992, 1996, 1999, 2000, 
2004–2006, 2010, and 2015–2021. Space-based time series of seagrass areal cover for each region showed a 
positive correlation with estimates from aerial mapping (r > 0.61). Over the period 1990–2021, satellite-derived 
estimates show seagrass areal cover increased by 24.3 km2 (34.4%) in Tampa Bay, 18.0 km2 (74.1%) in St. 
Joseph Sound, 6.3 km2 (182.6%) in Clearwater, and 1.3 km2 (5.3%) in Sarasota. Overall, the combined seagrass 
areal cover for the entire region increased by 49.9 km2 (40.6%), or ~1.4% yr− 1, from 1990 through 2021. In
creases in seagrass areal cover before 2020 coincide with improvements in water quality throughout the region 
(i.e., a general decrease in chlorophyll-a, phosphorous, nitrogen concentration, and turbidity). The publicly- 
available satellite datasets in GEE provide resource managers with complementary and unique tools for syn
optic and repeated seagrass areal cover assessments. This is an important approach to monitor the seagrass cover 
Essential Ocean Variable (EOV) of the Global Ocean Observing System (GOOS).   

1. Introduction 

Seagrasses are found in shallow coastal zones from the tropics to the 
sub-Arctic. They support diverse and productive biological communities 
and provide a wide range of benefits to humans (Duarte et al., 2005; 
Waycott et al., 2009). The ecological and biogeochemical role of sea
grasses depends on local seagrass areal cover. While estimating global 
seagrass areal cover remains a challenge (McKenzie et al., 2020), many 
studies show a decline in local seagrass areal cover around the world. 
For example, Waycott et al. (2009) reported that seagrass areal cover in 
Australia, United States, and Europe declined about 1.5% yr− 1 between 

1879 and 2006. Sudo et al. (2021) estimated a loss of 4.7% yr− 1 between 
2000 and 2020 in Southeast Asia. Telesca et al. (2015) reported a decline 
of 34% in Posidonia oceanica areal cover using almost 50 years of data 
from the Mediterranean Sea, similar to the 29% decline reported by de 
los Santos et al. (2019) in European seagrasses between 1869 and 2016. 
Yet, many regions lack basic information on seagrass areal cover and are 
not routinely monitored. 

Seagrass habitats off West-Central Florida have been mapped and 
monitored routinely using aerial photography and in-situ surveys for 
many years. The Southwest Florida Water Management District 
(SWFWMD) has been conducting aerial mapping of seagrass habitats 
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along Florida’s Gulf coast since 1988. In-situ seagrass transect moni
toring has been ongoing in the estuaries of Tampa Bay, Sarasota Bay, 
Lemon Bay, and Charlotte Harbor since early 1990s. These efforts are 
possible through state, regional, and local partnerships facilitated 
through the Tampa Bay Estuary Program (TBEP) and Florida Aquatic 
Preserves (Sherwood et al., 2016). The estuaries of West-Central Florida 
are generally dominated by three seagrass species: Thalassia testudinum, 
Halodule wrightii, and Syringodium filiforme (Yarbro and Carlson, 2016; 
Sherwood et al., 2017). Two more ephemeral species are also observed 
at much lower frequencies: Ruppia maritima and Halophila engelmannii 
(Sherwood et al., 2017). 

In Tampa Bay, seagrass areal cover decreased 47% between 1950 
and 1982 as urbanization expanded and water quality degraded (Lewis 
et al., 1985; Johansson and Lewis, 1992; Greening et al., 2014). The 
recognition that seagrasses are a critical habitat for fish and manatees in 
Tampa Bay led to an active campaign by the TBEP to manage nitrogen 
inputs into Tampa Bay (Greening et al., 2014). The goal was to improve 
the light availability for seagrasses by increasing water clarity through a 
reduction in water column chlorophyll concentration associated with 
phytoplankton biomass stimulated by nutrient inputs. Implementation 
of initiatives and projects based upon this paradigm have been suc
cessful over the past 30 years resulting in a recovery of seagrass areal 
cover to levels comparable to that of the 1950s and surpassing these 
estimates in 2016 at 416.5 km2 (Johansson and Lewis, 1992; Tomasko 
et al., 2005, 2018; Greening et al., 2014; Sherwood et al., 2017; Beck 
et al., 2019). Seagrass beds in other regions off West-Central Florida 
such as Sarasota Bay have increased in cover by 32% over the period 
1950–2016 (Tomasko et al., 2018). Regions such as St. Joseph Sound 
and Clearwater Harbor lack long-term seagrass monitoring data. How
ever, over the period 1999–2016, seagrass bed cover in St. Joseph Sound 
and Clearwater Harbor increased by 10.5% and 43.7%, respectively 
(Tomasko et al., 2018). 

Among the challenges in monitoring seagrass areal cover is the cost 

and time involved in conducting repeated aerial and in-situ surveys. 
Several studies have explored the potential of using satellite imagery to 
map seagrass habitats, since many different types of satellite data 
covering coastal areas of the world are openly available, such as Landsat 
and Sentinel missions (Lyons et al., 2013; Topouzelis et al., 2018; 
Traganos et al., 2018; Poursanidis et al., 2019; Veettil et al., 2020). 
Likewise, seagrass mapping efforts along the West-Central Florida coast 
have been attempted for St. Joseph Sound and Clearwater Harbor using 
imagery from Landsat-5, IKONOS, and Hyperion for 2003, 2005, 2006, 
2009, and 2010 (Meyer and Pu, 2012; Pu et al., 2012, 2014; Pu and Bell, 
2017). 

Seagrass areas are typically identified in multispectral satellite data 
using spectral clustering algorithms. Machine learning classifiers, such 
as Classification and Random Tree (CART) and Random Forest, have 
been tested for seagrass mapping, but several studies find that Support 
Vector Machine (SVM) algorithms provide the best qualitative outputs 
with high accuracies (Marcello et al., 2018; Traganos and Reinartz, 
2018; Traganos et al., 2018; Wicaksono et al., 2021). The SVM algorithm 
aims to find an optimal hyperplane that separates the dataset into a 
predefined number of classes that minimizes misclassifications (Moun
trakis et al., 2011). As with most machine learning classifiers, seagrass 
mapping uncertainties tend to increase in areas with low seagrass den
sity (Roelfsema et al., 2013, 2014). Furthermore, spatial and spectral 
resolution of satellite imagery can be insufficient to accurately identify 
and differentiate seagrass species from other submerged vegetation 
(Phinn et al., 2008). 

Here we use imagery from the Landsat sensors and Sentinel-2 sat
ellite series to further understand seagrass areal cover changes along 
West-Central Florida. We defined seagrass areal cover as extent of sea
grass beds in an area. Our goals were to: 1) quantify changes of seagrass 
areal cover using Landsat-5, Landsat-7, Landsat-8, and Sentinel-2 im
agery over 1990–early 2021 in four regions of West-Central Florida 
(Fig. 1: St. Joseph Sound, Clearwater Harbor, Tampa Bay, and Sarasota 

Fig. 1. Maps of the study area. (A) Outline of the tiles 
for repeated image scene selection: Two Sentinel-2 
tiles and one Landsat tile used to cover the area of 
interest. (B) The four areas mapped off West-Central 
Florida: St. Joseph Sound, Clearwater Harbor, 
Tampa Bay, and Sarasota Bay. (C) Four major Tampa 
Bay segments studied: Hillsborough Bay (HB), Old 
Tampa Bay (OTB), Middle Tampa Bay (MTB), Lower 
Tampa Bay (LTB). The location of the monthly water 
quality stations from the Environmental Protection 
Commission of Hillsborough County (EPCHC) for 
each bay segment are also shown with color-coded 
dots. (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web 
version of this article.)   
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Bay), exploiting the potential of Google Earth Engine (GEE) for larger 
scale mapping in complex coastal waters; 2) validate the seagrass areal 
cover estimates using historical estimates derived from aerial surveys in 
those four regions; 3) evaluate seagrass areal cover trends in the context 
of water quality data within Tampa Bay; and 4) implement an open- 
access seagrass monitoring application using the GEE platform, and 
providing access to the historical satellite data in the cloud. This is an 
important approach to monitor the seagrass areal cover Essential Ocean 
Variable (EOV) of the Global Ocean Observing System (Miloslavich 
et al., 2018; Muller-Karger et al., 2018a, b). 

2. Methods 

2.1. Study area 

We focused our study on St. Joseph Sound, Clearwater Harbor, 
Tampa Bay, and Sarasota Bay in West-Central Florida (Fig. 1). We 
considered the Sarasota Bay region as a group of Sarasota Bay and other 
smaller water bodies such as Roberts Bay, Little Sarasota Bay, and 
Blackburn Bay. In these estuaries, seagrass beds typically grow at depths 
of 2 m or shallower as described by monitoring data from the TBEP and 
SWFWMD. For resource management purposes, Tampa Bay has been 
further divided into four major segments: Hillsborough Bay (HB), Old 
Tampa Bay (OTB), Middle Tampa Bay (MTB), and Lower Tampa Bay 
(LTB). Water quality in Tampa Bay is driven by precipitation, rivers, 
urban and industrial discharges, and wind- and tidal nutrient and sedi
ment sources. These also modulate the concentration of phytoplankton 
in the water column (Le et al., 2013). High precipitation typically occurs 
in June–September and low precipitation in October–May (Morrison 
et al., 2006). The highest and lowest levels in river discharge and 
chlorophyll concentration are observed in September and May, respec
tively (Chen et al., 2007; Le et al., 2013). Other factors such as winds and 
tides affect water quality in the bay through sediment resuspension 
during the dry season (Chen et al., 2007). 

2.2. Satellite imagery 

We used imagery from satellite sensors including Sentinel-2 (A and 
B), Landsat-8 Operational Land Imager (OLI), Landsat-7 Enhanced 
Thematic Mapper (ETM+), and Landsat-5 Thematic Mapper (TM) to 
cover an approximate study area of 3,611 km2 for seagrass mapping in 
the regions of interest (Fig. 1). Differences between Sentinel-2 A/B 
sensors and Landsat sensors include spatial resolution, revisit time, and 
spectral bands (Table 1). 

We identified imagery available between 1990 and early 2021. 
Seagrass was mapped for images characterized by good atmospheric 
conditions and good water visibility (e.g., no clouds and clear waters) 
(see Methods Section 2.3.1). Only the initial four years of Landsat-7 
imagery were used because of the failure of the Scan Line Corrector in 
early 2003, which caused a strip pattern and data gaps in each image 

after that. Landsat-5 and Landsat-7 imagery overlapped between 1999 
and 2003, allowing for a larger number of images for mapping in those 
years. A gap occurred in 2012 between the failure of Landsat-5 in mid- 
2012 and the launch of Landsat-8 in 2013. Landsat-8 imagery was not 
used jointly with Sentinel-2 imagery in overlapping years due to dif
ferences in pixel resolution between the sensors. Sentinel-2 was 
preferred for seagrass mapping after 2016, because of the faster revisit 
time afforded by two Sentinel-2 satellites (A and B) and better spatial 
resolution (Table 1). 

All imagery was accessed through GEE. This is a cloud-based plat
form that offers easy access to multi-petabyte satellite imagery while 
also providing high-performance computing resources to process the 
data (Gorelick et al., 2017). 

2.3. Processing workflow 

The seagrass mapping workflow followed the four steps described 
below (Fig. 2). 

2.3.1. Selection of images (Fig. 2I) 
Satellite imagery was initially selected based on region of interest, 

cloud cover (<40%), and time of collection (years). For regions of in
terest, one tile was selected for Landsat and two tiles for Sentinel (Fig. 1). 
Images represent georeferenced, calibrated top-of-atmosphere radiance. 
Cloud and land masks (Section 2.3.2) were applied to each image. Only 
pixels within polygons defined for each region of interest were analyzed 
(Fig. 1B). 

We used the normalized difference turbidity index (NDTI) to select 
images that contained the clearest water possible. The NDTI uses the red 
and green band ratios as a proxy for water turbidity in inland waters 
(Lacaux et al., 2007; Elhag et al., 2019), and it was useful also to identify 
good quality images for seagrass mapping in coastal shallow waters. The 
highest NDTI values observed (closer to zero) indicated images with 
turbid waters, sun glint, or unmasked clouds, while the lowest NDTI 
values (usually the most negative values) indicated images with best 
atmospheric and water conditions for the specific set of images and re
gion of interest (Fig. 3). We calculated mean NDTI values and number of 
valid pixels per image, after masking land and clouds (Fig. 2). The best 
images for seagrass mapping were selected by inspecting the images 
with lowest NDTI mean values. Threshold values were not used since 
NDTI varied according to the area of interest, bottom features contrib
uting to the NDTI (e.g., shallow seagrass beds and tidal flats), number of 
valid pixels after masking, and image quality. Most of the selected im
ages were collected between January–March and October–December 
(Table S1). Restricting the analysis to this period also minimized any 
seasonal variation in seagrass cover that may affect the estimations. 

2.3.2. Pre-processing (Fig. 2.II) 
Top-of-atmosphere reflectance images from Sentinel and Landsat 

were converted to bottom-of-atmosphere (BOA) reflectance using the 
Py6S model, a 6S radiative transfer model coded in the Python pro
gramming language (Wilson, 2013). The code was adapted and modified 
from Sam Murphy (https://github.com/samsammurphy/gee-atmco 
rr-S2) to work with the respective satellite imagery using the GEE Py
thon API (Appendix A). This allowed the same atmospheric correction to 
be applied across different satellite sensors in the cloud. The algorithm 
for cloud masking was modified from the Google cloudScore algorithm 
adapted by Chastain et al. (2019) and Poortinga et al. (2019) to work 
with Sentinel-2 and Landsat imagery. The cloudScore algorithm was 
modified to remove cold and bright pixels such as clouds and pixels with 
sun glint. We derived a high-resolution land mask of the region using the 
Normalized Difference Water Index (NDWI) algorithm with a few 
selected Sentinel-2 images (i.e. 10 m per pixel) (McFeeters, 1996). This 
index uses the green and near-infrared (NIR) bands to differentiate water 
from land. 

Water column and bottom reflectance contribution to BOA 

Table 1 
Characteristics of satellite sensors and relevant bands considered for seagrass 
mapping.  

Satellite 
Sensor 

Spatial 
Resolution (m) 

Bands of 
Interest (nm) 

Period Covered 
in this Study 

Revisit 
Time 
(Days) 

Landsat-5 
TM 

30 485, 560, 
660 

1984–2012 16 

Landsat-7 
ETM+

30 485, 560, 
660 

1999–2021 16 

Landsat-8 
OLI 

30 443, 482, 
561, 655 

2013–2021 16 

Sentinel- 
2A/B MSI 

10 443a, 482, 
561, 655 

2015–2021 ~5  

a Native resolution at 60 m resolution, but reprojected to 10 m. 
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reflectance in optically-shallow waters was corrected using the depth- 
invariant index (DII) method (Lyzenga, 1981; Green et al., 2000). 
Applying this method, spectral band ratios of the same bottom types (e. 
g., sand) across a depth gradient are linearized to compensate for light 
attenuation. The output of the blue and green band ratios was used as an 
additional input for seagrass classification (i.e., the DII band; see Section 
2.3.3). 

2.3.3. Classification (Fig. 2.III) 
We compiled an initial ground-truthing dataset of 5,019 georefer

enced points based on seagrass distribution from: 1) peer-reviewed 
publications (Table S2), 2) publicly-accessible databases (Beck, 2020; 
SWFWMD (https://data-swfwmd.opendata.arcgis.com)), and 3) inter
pretation of 2019 Sentinel-2 satellite imagery (10 m resolution) and 
aerial imagery (1 m resolution) from the National Agriculture Imagery 
Program (NAIP), as accessed from GEE. Point data were distributed into 
softbottom (N = 2,584), hardbottom (N = 185), and seagrass (N = 2,250). 
The hardbottom and softbottom categories span a variety of 
non-vegetated benthic substrates including rocks, sand, and mud. 

The total number of ground-truth points available was 3,054 for tile 
17RLM and 2,142 for tile 17RLL (both for Sentinel-2), and 2,558 for tile 
017/041 (path/row for Landsat). The available points were randomly 
assigned to training (70%) and validation (30%) datasets. The spatial 
distribution and number of points of this initial ground-truth dataset 
changed depending on year and valid pixels after masking (Table 2). The 
ground-truth datasets for other years before and after 2019 were built by 
adding or deleting points of the initial dataset as required, according to 
known seagrass distribution and visual interpretation of satellite imag
ery for each year. A link to the baseline dataset is provided in Appendix 
B. 

Input for training of the SVM classification algorithm included 
available bands within the visible spectra of Landsat and Sentinel sat
ellite sensors: the coastal aerosol (if available), blue, green, and red 
bands; in addition to the DII band. The use of the spectral bands along 
with the DII is intended to increase multidimensionality and classifica
tion accuracy of SVM, as described by Zhang et al. (2006), and to 
compensate for the effect of shallow water column on bottom reflec
tance (Section 2.3.1). However, the benefit of including the DII band was 

Fig. 2. Seagrass mapping workflow using Google Earth Engine. NDTI is the normalized difference turbidity index.  

Fig. 3. Normalized difference turbidity index (NDTI) in Sentinel-2 images with synoptical clear waters, turbidity, and sunglint. Note the contribution of shallow 
seagrass beds and tidal flats to the NDTI. 
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not measured in this study, since this is a typical procedure for benthic 
mapping. The SVM classifier was tuned using the RBF kernel with 
gamma and cost values set as 100. SVM classifier accuracies were 
assessed using the respective validation dataset using “producer accu
racy” for seagrass pixels and Kappa statistics of the overall classification 
(Congalton and Green, 2009). The producer accuracy is the number of 
sample units (i.e., pixels) classified as seagrass divided by the number of 
sample units indicated as seagrass (i.e., ground truth points). The Kappa 
statistic measures the agreement between the remotely sensed classifi
cation and reference data in an error matrix. The Kappa values range 
from +1 to − 1, where values ˂ 0.4 indicate poor agreement, values 
between 0.4 and 0.75 indicates good agreement, and values > 0.75 
indicate a strong agreement (Kalkhan et al., 1997). The seagrass clas
sification algorithm is provided in Appendix C. The classification was 
performed image by image, and not on image composites as is often 
done in benthic mapping studies. 

2.3.4. Post-classification (Fig. 2.IV) 
Pixels classified as seagrass in individual images were grouped to 

create one mosaic per year. A criterion to reduce misclassification errors 
was to keep only those seagrass pixels that appeared in the same location 
in at least 50% of the images (Fig. 4). This method was carefully adapted 
to each mosaic per tile, region, and year. Maximum seagrass pixel re
striction was avoided (i.e., retention of seagrass pixels present in all 
classified images) when possible, to reduce the loss of true seagrass 
pixels identified in certain images (Fig. 4B). However, in cases with only 
two images per year this criterion did not apply, and the images were 
mosaicked without conditions. The raster mosaic was manually edited in 
post-processing to mask out or to include pixels that may have included 
seagrass based on ground-truth and airborne observations according to 
visual interpretations. For example, segments like OTB and HB required 
more attention due to the presence of the attached green algae Caulerpa 
spp. Between 2017 and 2021, shifts from seagrass to Caulerpa have been 

Table 2 
Seagrass mapping accuracies and Kappa coefficients per year (mean ± standard 
deviation).  

Year Satellite Number of 
Images 

Average Ground- 
Truth Points 

Accuracy 
(%) 

Kappa 

1990 Landsat-5 2 2,348 79.6 ± 6.9 0.64 ±
0.10 

1992 Landsat-5 2 2,681 77.2 ± 1.8 0.59 ±
0.07 

1996 Landsat-5 3 2,545 84.4 ± 3.2 0.72 ±
0.02 

1999 Landsat-5 3 2,655 73.6 ± 3.1 0.59 ±
0.11 

2000 Landsat- 
5/7 

4 2,662 80.9 ± 2.6 0.67 ±
0.05 

2004 Landsat-5 2 2,609 79.5 ± 5.8 0.68 ±
0.07 

2005 Landsat-5 3 2,629 80.4 ± 3.5 0.64 ±
0.07 

2006 Landsat-5 3 2,576 81.1 ± 1.7 0.67 ±
0.04 

2010 Landsat-5 3 2,600 74.1 ± 3.8 0.56 ±
0.04 

2015 Landsat-8 3 2,478 78.3 ± 5.5 0.58 ±
0.10 

2016 Sentinel-2 8 2,382 84.0 ± 4.4 0.67 ±
0.06 

2017 Sentinel-2 7 2,368 85.2 ± 5.8 0.67 ±
0.08 

2018 Sentinel-2 6 2,272 83.5 ± 5.0 0.67 ±
0.08 

2019 Sentinel-2 8 2,445 87.9 ± 4.1 0.78 ±
0.06 

2020 Sentinel-2 7 2,394 86.4 ± 6.0 0.76 ±
0.09 

2021 Sentinel-2 4 2,450 85.0 ± 2.6 0.70 ±
0.05  

Fig. 4. Seagrass classification in different Sentinel-2 images using the SVM classifier (A) and after applying mosaicking conditions of seagrass presence according to 
the number of classified images per year. Note the reduction of misclassified pixels in the lower right corner of the mosaics as seagrass pixel restriction increases. 
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observed by TBEP in annual transect monitoring (Beck, 2020). Deep 
water and areas of no interest were manually masked out. This editing 
helps to increase the reliability of final seagrass maps, especially for 
time-series mapping consistency. The seagrass maps are provided in 
Appendix B. 

2.4. Analyses 

Seagrass maps produced from Landsat imagery were re-gridded to 
10 m to allow a pixel-by-pixel comparison to Sentinel-2 seagrass prod
ucts, e.g., 1990’s Landsat map vs. 2021’s Sentinel-2 map. This type of 
pixel-by-pixel spatial comparison was not possible with the SWFWMD 
vector file products. The classification accuracies of each classified 
image were averaged per year as an indicator of image and classification 
qualities of mosaicked seagrass maps. 

The benthic classification by the SWFWMD using aerial photographs 
includes two seagrass categories: continuous and patchy (Sherwood 
et al., 2017; Anastasiou and Morton, 2021a, b). Available seagrass areas 
estimated were only extracted from the continuous seagrass category at 
each region due to this category being the most dominant, and similar 
and comparable to quantification of areal cover of dense seagrass beds 
by satellite remote sensing. 

Time series of seagrass areal cover obtained with satellite and aerial 
imagery were compared. When an annual estimate from either dataset 
was not available, we filled the gap using a linear interpolation of these 
estimates between nearest years. A comparison among seagrass areas of 
2020 estimated with Landsat-8, Sentinel-2, and aerial photography was 
used to estimate variability across the different products and method
ologies. Differences in seagrass areal cover estimated by satellite imag
ery in 1990 and 2021 were calculated for each region and Tampa Bay 
segment. The rate of change in areal cover (% yr− 1) was obtained from 
the regression slope of the respective time series data. 

Additional assessments of seagrass cover change and long-term 
water quality monitoring data was only performed in Tampa Bay due 
to a lack of consistent dataset in the other estuaries (Fig. 1C). Water 
quality indicators such as chlorophyll-a, total nitrogen, phosphorus, 
dissolved oxygen concentration, turbidity, temperature, and salinity 
were downloaded from the Tampa Bay Water Atlas (https://www. 
tampabay.wateratlas.usf.edu/). The monthly data collected by the 
Environmental Protection Commission of Hillsborough County (EPCHC) 
at 45 stations within Tampa Bay (Fig. 1C) were averaged annually for 
each bay segment over the period 1990–2020. Water quality trends over 
time were quantified. We used the Akaike’s Information Criterion (AIC) 
method with stepwise selection to find the water quality variables that 
contribute the most to an optimal model of seagrass areal cover vari
ability in each Tampa Bay segment, using satellite estimates. A multiple 
linear regression (MLR) was performed using the variables selected by 
the AIC. 

Most of the workflow steps were done using the GEE web platform 
and GEE Python API. The post-classification was done with GEE and 
Serval plugins in QGIS v3.16, which was used for satellite imagery 
visualization and raster edition. The descriptive statistics and plots were 
made in Python. The AIC and MLR were performed with the Fathom 
toolbox for Matlab. Links to the atmospheric correction and seagrass 
classification codes are provided in the Appendix section. A link to the 
GEE app developed for examination of seagrass changes among years is 
also provided in Appendix D. 

3. Results 

Satellite-derived seagrass maps were generated for 16 years between 
1990 and 2021 (Table 2). In total, 68 out of 926 images were determined 
to be useful for processing (Table S1). The seagrass mapping accuracies 
and Kappa statistics derived from aggregated Landsat and Sentinel 
products ranged from 73.6% to 87.9% and from 0.56 to 0.78 over the 
period, respectively (Table 2). In general, accuracy of seagrass mapping 

was greater for Sentinel-2 imagery (83.5–87.9%) compared to Landsat 
products (73.6–84.4%). 

The seagrass areal cover estimated by satellite remote sensing 
showed similar trends as those derived by SWFWMD (Fig. 5). The 
satellite-derived and SWFWMD time series were positively correlated for 
all regions (r > 0.61). The highest correlations were found for Tampa 
Bay (r > 0.89), which had the longest time series. The trends in all re
gions showed an overall increase in seagrass areal cover over the last 30 
years (see Table S3 for values of data in Fig. 5). 

Major changes in seagrass areal cover estimated using satellite im
agery were identified for the periods 1990–2010 (+59.4%), 2010–2015 
(− 15.4%), and 2015–2021 (+29.2%) in St. Joseph Sound; 1990–2004 
(+201.5%), 2004–2015 (− 27.8%), 2015–2021 (+29.8%) in Clearwater 
Harbor; 1992–2000 (− 16%) and 2000–2021 (+50.1%) in Tampa Bay; 
and 1990–2018 (+30%) and 2018–2021 (− 19%) in Sarasota Bay. De
clines were observed between 2018 and 2020 in all regions except St. 
Joseph Sound. This was followed by an increase in early 2021 in all 
regions with the exception of Sarasota Bay. The decline in Sarasota Bay 
since 2018 has led to slightly higher seagrass areal cover in 2021 than 
that estimated in the 1990’s (+5.3% or 1.3 km2) (Fig. 6). In contrast, 
Clearwater Harbor showed the highest increase in seagrass areal cover 
(+182.6% or 6.3 km2) in relation to the period 1990–2021, followed by 
St. Joseph Sound (+74.1% or 18 km2), and Tampa Bay (+34.4% or 24.3 
km2). For all areas off West-Central Florida combined, seagrass areal 
cover increased by 49.9 km2 (40.6%) in the period 1990–2021 (Fig. 6). 
This represents an annual rate of 1.3% yr− 1 over the 1990–2021 period. 

We further examined differences in seagrass areal cover estimates 
from Sentinel-2 and Landsat-8 using data from 2020 (Fig. 7). Five im
ages from 2020 for Landsat-8 were used for this specific comparison 
(Table S1). Specifically, seagrass areal cover estimates with Sentinel-2 
were larger than those from Landsat-8 by +7.6% in St. Joseph Sound, 
+20.3% in Clearwater, +4.3% in Tampa Bay, and +1.4% in Sarasota 
Bay. On average, the difference between the Sentinel-2 and Landsat-8 
products was +5.4%. Areal cover estimates derived from SWFWMD 
datasets were different from Sentinel-2 and Landsat-8 products. The 
respective difference was +5.1% and +11.7% in St. Joseph Sound, 
+31.9% and +43.4% in Clearwater Harbor, − 2.9% and +1.3% in 
Tampa Bay, and 19.2% and 20.3% in Sarasota Bay (Fig. 7). The overall 
difference across regions was +5.7% (Sentinel-2) and +10.5% (Landsat- 
8). Seagrass maps showed similar distribution patterns among products, 
but some seagrass patches, edges, and other details were lost with 
coarser pixel resolution (Fig. 5B). The largest percent differences 
occurred in areas with the smallest seagrass areal cover (i.e., Clearwater 
Harbor and Sarasota Bay). 

The change in seagrass areal cover derived using satellite imagery 
between 1990 and 2021 was +4.7% yr− 1 in Clearwater, +2.19% yr− 1 in 
St. Joseph Sound, +1.29% yr− 1 in Tampa Bay, and +0.47% yr− 1 in 
Sarasota. In Tampa Bay, rates were +7.87% yr− 1 in HB, +2.31% yr− 1 in 
OTB, +1.17% yr− 1 in LTB, and +1.06% yr− 1 in MTB. Seagrass rates of 
change in Tampa Bay were higher with water quality improvements in 
the most polluted segments over 1990–2020 (Table 3, Fig. 8). Tampa 
Bay segments showed a clear gradient of physical and chemical pa
rameters (Table 3). During the period 1990–2020 were observed de
clines in chlorophyll-a, nitrogen, phosphorus, turbidity, salinity, and 
dissolved oxygen; and increases in surface temperature (Table 3). 
Decreasing trends of nitrogen, phosphorous, turbidity, and dissolved 
oxygen were significant (p < 0.05) (Table 3). 

Declines in salinity were recorded in 1998 and 2003 in all segments 
(Fig. 8). An apparent increase in water temperature is observed after 
2010, and lower mean values were occasionally recorded for OTB over 
1990–2020. Dissolved oxygen was notably different between HB and 
OTB after 2010. Maximum concentrations in chlorophyll-a were recor
ded in 1994, 1995 and 1998. Nitrogen concentrations were higher in 
1994 and 2000. Phosphorus concentrations were in constant decline 
since 1990, but occasional increases were recorded in 1998, 2004 and 
2020. The major periods of change in seagrass areal cover in Tampa Bay, 
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Fig. 5. Seagrass areal cover from 1990 to 2021 in several West-Central Florida regions (A) and within specific Tampa Bay segments (B) estimated from satellite 
imagery and aerial photography (SWFWMD). Correlation coefficients (r) between satellite and aerial time series are shown in each panel. 

Fig. 6. Seagrass areal cover changes over the period 1990–2021 in (A) Tampa Bay, (B) St. Joseph Sound (upper half), Clearwater (lower half), and (C) Sarasota Bay, 
estimated with satellite mapping. 
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before and after 2000, coincided with these contrasting water quality 
conditions over the same periods. 

The water quality parameters that better explained changes in sea
grass cover change during 1990–2020 were turbidity and total nitrogen 
in HB and OTB, turbidity and dissolved oxygen in MTB, and turbidity in 
LTB (Table S4). These parameters explained between 62 and 90% of the 
variability in seagrass areal cover change in Tampa Bay with a signifi
cance of p < 0.05 (Table 4). 

4. Discussion 

4.1. Ecological and management implications 

Seagrass mapping products derived from satellite imagery and aerial 
mapping between 1990 and 2021 showed similar positive trends in 

estimates of seagrass areal cover. Legislation and regulation of waste
water and stormwater discharges beginning in the 1970s, and the 
establishment of national estuary programs in southwest Florida have 
supported the recovery of seagrass beds (Greening and Janicki, 2006; 
Sherwood et al., 2016; Tomasko et al., 2018). This led to enhanced fish 
production and ecosystem stability (Greening et al., 2014; Schrandt 
et al., 2021). In 2014, the goal to restore Tampa Bay seagrass areal cover 
to that in the 1950s was met (i.e., >153.78 km2, including both 
continuous and patchy seagrass beds) (Sherwood et al., 2017). 

Tampa Bay segments show differences in water quality that affect the 
rate of seagrass areal cover and distribution change over the studied 
period. Water quality changes in all Tampa Bay segments presented 
similar patterns over time at different levels and concentrations, espe
cially in concentration of chlorophyll-a, total nitrogen, and phospho
rous, and in turbidity and salinity. The most polluted segments (HB and 
OTB) showed larger increasing rates of seagrass areal cover than less 
polluted segments (MTB and LTB). This may represent a recovery 
response associated to water quality changes at different contamination 
levels. River discharge plays a major role in the water quality of Tampa 
Bay. Le et al. (2013) described positive correlations (>0.73) between 
river discharge and remotely sensed chlorophyll-a between 1998 and 
2010 in Tampa Bay. They reported maximal water discharges for Alafia 
River, Hillsborough River, Little Manatee River, and Manatee River in 
1998, 2003 and 2004, which coincided with minima in salinity and 
maxima in phosphorus and chlorophyll. Finer-scale assessments of 
observed water quality improvements across these segments of Tampa 
Bay relative to seagrass areal cover changes is needed to fully under
stand seasonal and interannual impacts on in seagrass distribution, 
cover, and health. 

4.2. Seagrass mapping limitations 

Seagrass mapping with remote sensing is possible only for shallow 
environments due to light attenuation with water depth. Poursanidis 
et al. (2019) were able to detect seagrass beds with Sentinel-2 imagery 
up to 32 m depth in oligotrophic waters of the Mediterranean. This is 
likely an extreme case, given the very clear water in some of the regions 
they studied. Such conditions are more limited off the West Florida 
coast, where tannic river discharges and estuarine production signifi
cantly obstruct water clarity. Variations in seagrass densities, water 
depth, turbidity, color, and pixel resolution impose additional limita
tions for seagrass mapping. We found that satellite remote sensing was 
able to detect seagrass patches larger than 100 m2 for Sentinel-2 imagery 
and 900 m2 for Landsat imagery, given their respective pixel resolutions. 
For each sensor, reflectance due to seagrass diminishes compared to 
other substrates as seagrass cover or density decrease within a pixel. 

Fig. 7. Seagrass areas estimated with Landsat-8, Sentinel-2, and aerial 
photography in 2020. (A) Quantitative comparisons between products in four 
regions of West-Central Florida. (B) Comparison of seagrass cover maps pro
duced by satellite imagery in this study and aerial photography by 
the SWFWMD. 

Table 3 
Changes in water quality in four Tampa Bay segments in the period 1990–2020. Regression slope values in bold are significative (p < 0.05).  

Segments Chl-a (mg m− 3) N (mg m− 3) P (mg m− 3) Turbidity (NTU) Temperature (◦C) Salinity Dissolved Oxygen (mg L− 1)  

Mean ± S.D. 

HB 12.2 ± 3.0 614.5 ± 208.8 293.8 ± 91.1 5.0 ± 2.0 24.6 ± 0.6 24.7 ± 2.7 6.4 ± 0.4 
OTB 9.6 ± 1.6 610.5 ± 206.7 182.9 ± 71.4 4.1 ± 1.4 24.0 ± 0.7 24.0 ± 3.0 6.6 ± 0.2 
MTB 6.6 ± 1.5 506.9 ± 196.6 180.7 ± 60.8 3.5 ± 1.5 24.4 ± 0.5 27.3 ± 2.2 6.4 ± 0.2 
LTB 4.2 ± 0.9 420.8 ± 164.3 100.5 ± 40.7 3.5 ± 1.5 24.3 ± 0.5 31.8 ± 1.4 6.4 ± 0.2  

Δ 1990–2020 (%) 

HB − 21.7 − 51.0 − 48.4 − 72.9 0.5 − 14.4 − 4.0 
OTB 0.5 − 39.9 − 33.6 − 65.9 1.8 − 21.2 − 4.7 
MTB − 32.8 − 51.6 − 33.7 − 73.0 − 0.1 − 17.2 − 3.6 
LTB − 38.4 − 40.7 122.1 − 67.8 1.6 − 13.8 − 3.2  

Regression slope (in respective units) 

HB − 0.09 ¡18.20 ¡7.36 ¡0.18 0.01 − 0.07 ¡0.03 
OTB 0.04 ¡16.62 ¡4.50 ¡0.12 0.02 − 0.10 ¡0.01 
MTB ¡0.07 ¡15.78 ¡4.42 ¡0.14 0.01 − 0.06 ¡0.02 
LTB − 0.03 ¡10.30 0.54 ¡0.12 0.02 − 0.04 ¡0.02  
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Zoffoli et al. (2020) showed how the density of Zostera noltei may affect 
its reflectance signature and increase mapping uncertainties in pixel 
areas with less than 50% of seagrass density. This demonstrates the 
limitation for seagrass mapping in areas with low seagrass densities. 

Although depth was not a limitation in this study (seagrasses in the 
regions studied typically occur in <5 m depth), water quality and pixel 
resolution made it difficult to map some areas during rainy seasons. Our 
mapping methodology is applicable to shallow waters with presence of 
dense seagrass beds, mainly. Applications for mapping in deeper areas, 
with different satellite sensors, or seagrass species or densities may in
crease inaccuracies. The probability of misclassifications increases with 
depth, and some bottom features such as submerged vegetation and 
brown mud are indistinguishable below 10 m depth (Lyzenga, 1978). 
The capability to discriminate among seagrass species is also very 
limited and decreases with depth, and spectral and spatial resolution of 
the satellite images. For example, Phinn et al. (2008) mapped seagrass 
species shallower than 3 m in Australia with low to moderate producer 
accuracies (7–67%) using Quickbird-2 multispectral imagery at 2.4 m 
per pixel and low-high producer accuracies (8–84%) using CASI-2 
hyperspectral imagery at 4 m per pixel. They were unable to map sea
grass species using Landsat-5 imagery. Previous studies, datasets, and 
expert feedback are all important to improve mapping accuracy 
(Roelfsema et al., 2021). 

4.3. Time-series mapping performance 

Differences in classification accuracies (Table 2) and estimated areal 
cover between Landsat and Sentinel-2 imagery were observed (Fig. 7). 
The number and quality of the images used for seagrass mapping per 
year are important to accurately classify benthic habitats. Kovacs et al. 
(2018) found similar seagrass mapping accuracies but some differences 
in seagrass distribution patterns in maps produced with Landsat-8 at 30 
m, Sentinel-2 at 10 m, ZY-3A at 5 m, and WorldView-3 at 2 m, in ~100 
km2 of seagrass beds in Moreton Bay, Australia. They also found similar 
seagrass areal cover derived with Landsat-8 and Sentinel-2, but ZY-3A 
and WorldView-3 provided lower seagrass areal cover estimates. In 
our study, we found that the seagrass areal cover in Clearwater Harbor 
estimated with satellite data from 2020 was <10 km2, but that estimated 
with Sentinel-2 imagery was ~20% larger than that derived with 
Landsat-8. The Tampa Bay, Sarasota Bay, and St. Joseph Sound regions 
with seagrass areal cover >20 km2 and <100 km2 presented differences 
between 1.4% and 7.6% in calculated seagrass areas with Landsat-8 and 
Sentinel-2 in 2020. Differences with the estimates from the SWFWMD 
were expected due to mapping techniques, number of benthic classifi
cation classes, and human error. Nonetheless, we found similar trends of 
seagrass areal cover change and demonstrated the consistency of satel
lite mapping for estimating seagrass areal cover over time in West 
Florida. 

The amount and quality of Sentinel-2 images compared to other 
satellite data increases the opportunities to map seagrasses at different 
times of the year in optically-complex coastal waters. Sentinel-2A and 
Sentinel-2B provided roughly three (3) times more data per year than 
individual Landsat satellites. Seagrass mapping efforts using annual 
Landsat-5 and Landsat-7 data from 1988 to 2010 have been successful in 
locations with low runoff impact in Australia (Lyons et al., 2013). 
However, seagrass mapping with Landsat becomes limited due to the 
lower historical availability of images for most coastal regions outside 
the United States (Wulder et al., 2016). Greater availability of images 
also allows monitoring of seasonal changes in benthic cover (Lyons 
et al., 2013; Wicaksono et al., 2021). Our seagrass mapping methodol
ogy explored the potential of GEE for increasing the mapping effort and 
create annual mosaics from individual classified images at larger spatial 
scales than traditionally pursued. Further studies on seagrass seasonality 
might be feasible in regions with complex water quality dynamics using 

Fig. 8. Annual averages of water quality indicators at four major Tampa Bay segments monitored by the EPCHC. No turbidity data was available between 2007 
and 2016. 

Table 4 
Multiple linear regression including the most significant water quality param
eters contributing to seagrass areal cover change in each Tampa Bay segment.  

Segment Optimal Model R2 R2- 
adj 

F p 

HB 2007.13–5.66 x (Turbidity) - 4.84 
x (Nitrogen) 

0.88 0.86 42.98 0.001 

OTB 2007.13–7.02 x (Turbidity) - 4.67 
x (Nitrogen) 

0.91 0.90 62.38 0.001 

MTB 2007.13–6.86 x (Turbidity) - 3.50 
x (DO) 

0.86 0.83 35.79 0.001 

LTB 2007.13–8.19 x (Turbidity) 0.65 0.62 23.96 0.001  

L. Lizcano-Sandoval et al.                                                                                                                                                                                                                     



Estuarine, Coastal and Shelf Science 279 (2022) 108134

10

combinations of several different satellite datasets and detailed in-situ 
data. Satellite-derived seagrass maps can support management efforts 
by detecting rapid changes in seagrass areal cover at faster and low-cost 
ways than the traditional methods. As such, these methods are recom
mended for use at larger temporal and spatial scales. 

5. Conclusions 

Repeated seagrass mapping contributes to understanding seagrass 
dynamics and changes over time. Mapping of seagrass habitat areal 
cover over large spatial and temporal scales is possible using satellite 
images and results are comparable to those from traditional aerial 
mapping methods. The West-Central Florida seagrass beds have 
increased their cover over the last three decades. Over 1990–2021, 
significant increases in seagrass cover were observed in Clearwater 
Harbor (182.6%), St. Joseph Sound (74.1%), and Tampa Bay (34.4%). 
Seagrass beds in Sarasota Bay have increased (5.3%), but continuous 
declines after 2018 were recorded and require more observation. Like
wise, the upper Tampa Bay segments have experienced recent declines. 
Management actions by federal, state, and local groups to improve water 
quality in Tampa Bay have helped to effectively restore seagrass beds in 
the long-term. Tampa Bay segments with the highest concentrations in 
chlorophyll-a, nitrogen, phosphorus, and turbidity displayed the highest 
increases in seagrass areal cover as response to water quality improve
ments over time. Monitoring of seagrass areal cover over large areas is 
now possible and feasible with public satellite imagery available in the 
cloud, leveraging the high computing performance and large satellite 
imagery catalogs available in GEE. Cloud-computing mapping of sea
grass beds using public satellite data provides a low-cost solution in 
assessing seasonal to interannual changes in areal cover of this critical 
habitat. It also complements information gathered from traditional 
survey methods, while also optimizing the use of field monitoring re
sources and adaptative management capacity of resource managers. 
These new cloud computing methods provide an important pathway to 
monitor the seagrass areal cover EOV over regional and eventually 
global scales. 
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